Sunday, 29 October 2017

Previsione Ponderata Mobile Media


Modello a media mobile esponenziale e Come primo passo nel muoversi oltre i modelli medi, modelli random walk, e modelli di tendenza lineare, i modelli non stagionali e le tendenze possono essere estrapolati utilizzando un modello a media mobile o levigante. L'assunto di base dietro media e modelli di livellamento è che la serie temporale è localmente stazionario con una media lentamente variabile. Quindi, prendiamo una media mobile (locale) per stimare il valore corrente della media e poi utilizzarla come la previsione per il prossimo futuro. Questo può essere considerato come un compromesso tra il modello media e la deriva modello random walk-senza-. La stessa strategia può essere utilizzata per stimare e estrapolare una tendenza locale. Una media mobile è spesso chiamato una versione quotsmoothedquot della serie originale, perché la media a breve termine ha l'effetto di appianare i dossi nella serie originale. Regolando il grado di lisciatura (la larghezza della media mobile), possiamo sperare di colpire un qualche tipo di equilibrio ottimale tra le prestazioni dei modelli medi e random walk. Il tipo più semplice di modello di media è il. Semplice (equamente ponderate) Media mobile: Le previsioni per il valore di Y al tempo t1 che viene fatta al tempo t è pari alla media semplice dei più recenti osservazioni m: (Qui e altrove mi utilizzerà il simbolo 8220Y-hat8221 di stare per una previsione di serie temporali Y fatta quanto prima prima possibile da un dato modello.) Questa media è centrato periodo t - (m1) 2, il che implica che la stima della media locale tenderà a restare indietro il vero valore della media locale circa (m1) 2 periodi. Così, diciamo l'età media dei dati nella media mobile semplice (m1) 2 rispetto al periodo per il quale è calcolata la previsione: questa è la quantità di tempo per cui previsioni tenderanno a restare indietro ruotando punti nei dati . Ad esempio, se si sta una media degli ultimi 5 valori, le previsioni saranno circa 3 periodi in ritardo nel rispondere a punti di svolta. Si noti che se m1, il modello di media mobile semplice (SMA) è equivalente al modello random walk (senza crescita). Se m è molto grande (paragonabile alla lunghezza del periodo di stima), il modello SMA è equivalente al modello medio. Come con qualsiasi parametro di un modello di previsione, è consuetudine per regolare il valore di k per ottenere la migliore quotfitquot ai dati, cioè i più piccoli errori di previsione in media. Ecco un esempio di una serie che sembra mostrare fluttuazioni casuali intorno a una media lentamente variabile. Innanzitutto, proviamo per adattarsi con un modello casuale, che è equivalente a una media mobile semplice di 1 termine: Il modello random walk risponde molto velocemente alle variazioni della serie, ma così facendo raccoglie gran parte del quotnoisequot nel dati (le fluttuazioni casuali) e il quotsignalquot (media locale). Se invece cerchiamo una semplice media mobile di 5 termini, si ottiene un insieme più agevole dall'aspetto delle previsioni: Il 5-termine mobile semplice rese medie in modo significativo gli errori più piccoli rispetto al modello random walk in questo caso. L'età media dei dati di questa previsione è 3 ((51) 2), in modo che tende a ritardo punti di svolta da circa tre periodi. (Per esempio, una flessione sembra essersi verificato in periodo di 21, ma le previsioni non girare intorno fino a diversi periodi più tardi.) Si noti che le previsioni a lungo termine dal modello SMA sono una retta orizzontale, proprio come nel random walk modello. Pertanto, il modello SMA presuppone che vi sia alcuna tendenza nei dati. Tuttavia, mentre le previsioni del modello random walk sono semplicemente uguale all'ultimo valore osservato, le previsioni del modello di SMA sono pari ad una media ponderata dei valori ultimi. I limiti di confidenza calcolato dai Statgraphics per le previsioni a lungo termine della media mobile semplice non ottengono più ampio con l'aumento della previsione all'orizzonte. Questo ovviamente non è corretto Purtroppo, non vi è alcuna teoria statistica di fondo che ci dice come gli intervalli di confidenza deve ampliare per questo modello. Tuttavia, non è troppo difficile da calcolare le stime empiriche dei limiti di confidenza per le previsioni di più lungo orizzonte. Ad esempio, è possibile impostare un foglio di calcolo in cui il modello SMA sarebbe stato utilizzato per prevedere 2 passi avanti, 3 passi avanti, ecc all'interno del campione di dati storici. È quindi possibile calcolare le deviazioni standard campione degli errori in ogni orizzonte di previsione, e quindi la costruzione di intervalli di confidenza per le previsioni a lungo termine aggiungendo e sottraendo multipli della deviazione standard appropriato. Se cerchiamo una media del 9 termine semplice movimento, otteniamo le previsioni ancora più fluide e più di un effetto ritardo: L'età media è ora 5 punti ((91) 2). Se prendiamo una media mobile 19-termine, l'età media aumenta a 10: Si noti che, in effetti, le previsioni sono ora in ritardo punti di svolta da circa 10 periodi. Quale quantità di smoothing è meglio per questa serie Ecco una tabella che mette a confronto le loro statistiche di errore, anche compreso in media 3-termine: Modello C, la media mobile a 5-termine, i rendimenti il ​​valore più basso di RMSE da un piccolo margine su 3 - term e 9 termine medie, e le loro altre statistiche sono quasi identici. Così, tra i modelli con le statistiche di errore molto simili, possiamo scegliere se avremmo preferito un po 'più di risposta o un po' più scorrevolezza nelle previsioni. (Torna a inizio pagina.) Browns semplice esponenziale (media mobile esponenziale ponderata) Il modello a media mobile semplice di cui sopra ha la proprietà indesiderabile che tratta le ultime osservazioni k ugualmente e completamente ignora tutte le osservazioni che precedono. Intuitivamente, dati passati devono essere attualizzati in modo più graduale - per esempio, il più recente osservazione dovrebbe avere un peso poco più di 2 più recente, e la 2 più recente dovrebbe ottenere un po 'più peso che la 3 più recente, e presto. Il modello semplice di livellamento esponenziale (SES) realizza questo. Diamo 945 denotano una constantquot quotsmoothing (un numero compreso tra 0 e 1). Un modo per scrivere il modello è quello di definire una serie L che rappresenta il livello attuale (cioè il valore medio locale) della serie come stimato dai dati fino ad oggi. Il valore di L al momento t è calcolata in modo ricorsivo dal proprio valore precedente in questo modo: Così, il valore livellato corrente è una interpolazione tra il valore livellato precedente e l'osservazione corrente, dove 945 controlla la vicinanza del valore interpolato al più recente osservazione. Le previsioni per il prossimo periodo è semplicemente il valore livellato corrente: Equivalentemente, possiamo esprimere la prossima previsione direttamente in termini di precedenti previsioni e osservazioni precedenti, in una delle seguenti versioni equivalenti. Nella prima versione, la previsione è una interpolazione tra precedente meteorologiche e precedente osservazione: Nella seconda versione, la prossima previsione è ottenuta regolando la previsione precedente nella direzione dell'errore precedente di una quantità frazionaria 945. è l'errore al tempo t. Nella terza versione, la previsione è di un (cioè scontato) media mobile esponenziale ponderata con fattore di sconto 1- 945: La versione di interpolazione della formula di previsione è il più semplice da usare se si implementa il modello su un foglio di calcolo: si inserisce in un singola cellula e contiene i riferimenti di cella che puntano alla previsione precedente, l'osservazione precedente, e la cella in cui è memorizzato il valore di 945. Si noti che se 945 1, il modello SES è equivalente ad un modello random walk (senza crescita). Se 945 0, il modello SES è equivalente al modello medio, assumendo che il primo valore livellato è impostata uguale alla media. (Torna a inizio pagina). L'età media dei dati nelle previsioni semplice esponenziale-levigante è di 1 945 relativo al periodo per il quale è calcolata la previsione. (Questo non dovrebbe essere ovvio, ma può essere facilmente dimostrare valutando una serie infinita.) Quindi, la semplice previsione media mobile tende a restare indietro punti di svolta da circa 1 945 periodi. Ad esempio, quando 945 0.5 il ritardo è di 2 periodi in cui 945 0.2 il ritardo è di 5 periodi in cui 945 0.1 il ritardo è di 10 periodi, e così via. Per una data età media (cioè quantità di ritardo), il semplice livellamento esponenziale (SES) previsione è un po 'superiore alla previsione media mobile semplice (SMA) perché pone relativamente più peso sulla più recente --i. e osservazione. è leggermente più quotresponsivequot ai cambiamenti che si verificano nel recente passato. Per esempio, un modello di SMA con 9 termini e un modello di SES con 945 0,2 entrambi hanno un'età media di 5 per i dati nelle loro previsioni, ma il modello SES mette più peso sugli ultimi 3 valori di quanto non faccia il modello SMA e al contempo doesn8217t interamente 8220forget8221 sui valori più di 9 periodi vecchi, come mostrato in questo grafico: un altro importante vantaggio del modello SES sul modello SMA è che il modello SES utilizza un parametro smoothing che è continuamente variabile, in modo che possa facilmente ottimizzato utilizzando un algoritmo quotsolverquot per minimizzare l'errore quadratico medio. Il valore ottimale di 945 nel modello SES a questa serie risulta essere 0,2961, come illustrato di seguito: L'età media dei dati in questa previsione è 10.2961 3.4 periodi, che è simile a quella di una media 6 termine mobile semplice. Le previsioni a lungo termine dal modello SES sono una linea retta orizzontale. come nel modello SMA e il modello random walk senza crescita. Si noti tuttavia che gli intervalli di confidenza calcolati da Statgraphics ora divergono in modo ragionevole dall'aspetto, e che sono sostanzialmente più stretto gli intervalli di confidenza per il modello random walk. Il modello di SES presuppone che la serie è un po 'predictablequot quotmore di quanto non faccia il modello random walk. Un modello SES è in realtà un caso particolare di un modello ARIMA. così la teoria statistica dei modelli ARIMA fornisce una solida base per il calcolo intervalli di confidenza per il modello SES. In particolare, un modello SES è un modello ARIMA con una differenza nonseasonal, un MA (1) termine, e nessun termine costante. altrimenti noto come un modello quotARIMA (0,1,1) senza constantquot. Il MA (1) coefficiente nel modello ARIMA corrisponde alla quantità 1- 945 nel modello SES. Ad esempio, se si adatta un modello ARIMA (0,1,1) senza costante alla serie analizzate qui, il MA stimato (1) coefficiente risulta essere 0,7029, che è quasi esattamente un meno 0,2961. È possibile aggiungere l'assunzione di una tendenza non-zero costante lineare per un modello SES. Per fare questo, basta specificare un modello ARIMA con una differenza non stagionale e di un (1) termine MA con una costante, cioè un (0,1,1) modello ARIMA con costante. Le previsioni a lungo termine avranno quindi una tendenza che è uguale alla tendenza medio rilevato nel corso dell'intero periodo di stima. Non si può fare questo in collaborazione con destagionalizzazione, perché le opzioni di destagionalizzazione sono disattivati ​​quando il tipo di modello è impostato su ARIMA. Tuttavia, è possibile aggiungere una costante a lungo termine tendenza esponenziale ad un semplice modello di livellamento esponenziale (con o senza regolazione stagionale) utilizzando l'opzione di regolazione inflazione nella procedura di previsione. Il tasso appropriato quotinflationquot (crescita percentuale) per periodo può essere stimato come il coefficiente di pendenza in un modello trend lineare montato i dati in combinazione con una trasformazione logaritmo naturale, oppure può essere basata su altri, informazione indipendente per quanto riguarda le prospettive di crescita a lungo termine . (Ritorna all'inizio pagina.) Browns lineari (cioè doppie) modelli esponenziale La SMA e modelli di SES per scontato che non vi è alcuna tendenza di alcun tipo nei dati (che di solito è OK, o almeno non troppo male per 1- previsioni passo avanti quando i dati sono relativamente rumoroso), e possono essere modificati per includere un trend lineare costante come indicato sopra. Che dire di tendenze a breve termine Se una serie mostra un tasso variabile di crescita o un andamento ciclico che si distingue chiaramente contro il rumore, e se vi è la necessità di prevedere più di 1 periodo a venire, allora la stima di una tendenza locale potrebbe anche essere un problema. Il semplice modello di livellamento esponenziale può essere generalizzata per ottenere un modello lineare di livellamento esponenziale (LES) che calcola le stime locali sia a livello e di tendenza. Il modello di tendenza tempo-variante più semplice è Browns lineare modello di livellamento esponenziale, che utilizza due diverse serie levigato che sono centrate in diversi punti nel tempo. La formula di previsione si basa su un'estrapolazione di una linea attraverso i due centri. (Una versione più sofisticata di questo modello, Holt8217s, è discusso qui di seguito.) La forma algebrica di Brown8217s lineare modello di livellamento esponenziale, come quello del semplice modello di livellamento esponenziale, può essere espresso in una serie di forme diverse ma equivalenti. La forma quotstandardquot di questo modello è di solito espressa come segue: Sia S denotano la serie singolarmente-levigata ottenuta applicando semplice livellamento esponenziale di serie Y. Cioè, il valore di S al periodo t è dato da: (Ricordiamo che, in semplice livellamento esponenziale, questo sarebbe il tempo per Y al periodo t1) Allora che Squot denotano la serie doppiamente levigata ottenuta applicando semplice livellamento esponenziale (utilizzando lo stesso 945) per serie S:. Infine, le previsioni per Y tk. per qualsiasi kgt1, è data da: Questo produce e 1 0 (vale a dire imbrogliare un po ', e lasciare che la prima previsione uguale l'attuale prima osservazione), ed e 2 Y 2 8211 Y 1. dopo di che le previsioni sono generati usando l'equazione di cui sopra. Questo produce gli stessi valori stimati come la formula basata su S e S se questi ultimi sono stati avviati utilizzando S 1 S 1 Y 1. Questa versione del modello è usato nella pagina successiva che illustra una combinazione di livellamento esponenziale con regolazione stagionale. modello Holt8217s lineare esponenziale Brown8217s LES calcola stime locali di livello e l'andamento lisciando i dati recenti, ma il fatto che lo fa con un singolo parametro smoothing pone un vincolo sui modelli di dati che è in grado di adattarsi: il livello e tendenza non sono autorizzati a variare a tassi indipendenti. modello Holt8217s LES risolve questo problema includendo due costanti di lisciatura, uno per il livello e uno per la tendenza. In ogni momento t, come nel modello Brown8217s, il c'è una stima L t del livello locale e una T t stima della tendenza locale. Qui vengono calcolati ricorsivamente dal valore di Y osservata al tempo t e le stime precedenti del livello e l'andamento di due equazioni che si applicano livellamento esponenziale separatamente. Se il livello stimato e tendenza al tempo t-1 sono L t82091 e T t-1. rispettivamente, la previsione per Y tshy che sarebbe stato fatto al tempo t-1 è uguale a L t-1 T t-1. Quando si osserva il valore effettivo, la stima aggiornata del livello è calcolata in modo ricorsivo per interpolazione tra Y tshy e le sue previsioni, L t-1 T t-1, con pesi di 945 e 945. 1- La variazione del livello stimato, vale a dire L t 8209 L t82091. può essere interpretato come una misura rumorosa della tendenza al tempo t. La stima aggiornata del trend viene poi calcolata in modo ricorsivo interpolando tra L t 8209 L t82091 e la stima precedente del trend, T t-1. utilizzando pesi di 946 e 1-946: L'interpretazione del trend-smoothing costante 946 è analoga a quella del livello-levigatura costante 945. Modelli con piccoli valori di 946 assume che la tendenza cambia solo molto lentamente nel tempo, mentre i modelli con grande 946 supporre che sta cambiando più rapidamente. Un modello con un grande 946 ritiene che il lontano futuro è molto incerto, perché gli errori in trend-stima diventano molto importanti quando la previsione più di un periodo avanti. (Torna a inizio pagina.) Il livellamento costanti di 945 e 946 può essere stimato nel modo consueto minimizzando la media errore delle previsioni 1-step-ahead quadrato. Quando questo fatto in Statgraphics, le stime risultano essere 945 0,3048 e 946 0.008. Il valore molto piccolo di 946 significa che il modello assume molto poco cambiamento di tendenza da un periodo all'altro, in modo sostanzialmente questo modello sta cercando di stimare un trend di lungo periodo. Per analogia con la nozione di età media dei dati utilizzati nella stima del livello locale della serie, l'età media dei dati che viene utilizzato per stimare la tendenza locale è proporzionale a 1 946, anche se non esattamente uguale ad esso . In questo caso risulta essere 10,006 125. Questo isn8217t un numero molto preciso in quanto la precisione della stima di 946 isn8217t realmente 3 decimali, ma è dello stesso ordine generale di grandezza della dimensione del campione di 100, così questo modello è una media di più di un bel po 'di storia nella stima del trend. La trama meteo seguente mostra che il modello LES stima un leggermente maggiore tendenza locale alla fine della serie rispetto alla tendenza costante stimata nel modello SEStrend. Inoltre, il valore stimato di 945 è quasi identica a quella ottenuta inserendo il modello SES con o senza tendenza, quindi questo è quasi lo stesso modello. Ora, queste sembrano le previsioni ragionevoli per un modello che dovrebbe essere stimare un trend locale Se si 8220eyeball8221 questa trama, sembra che la tendenza locale si è trasformato in basso alla fine della serie Quello che è successo I parametri di questo modello sono stati stimati minimizzando l'errore quadratico delle previsioni 1-step-ahead, non le previsioni a lungo termine, nel qual caso la tendenza doesn8217t fare un sacco di differenza. Se tutti si sta guardando sono errori 1-step-avanti, non si è visto il quadro più ampio delle tendenze sopra (diciamo) 10 o 20 periodi. Al fine di ottenere questo modello più in sintonia con la nostra bulbo oculare estrapolazione dei dati, siamo in grado di regolare manualmente la tendenza-smoothing costante in modo che utilizzi una base più breve per la stima di tendenza. Ad esempio, se si sceglie di impostare 946 0.1, quindi l'età media dei dati utilizzati nella stima la tendenza locale è di 10 periodi, il che significa che ci sono in media il trend negli ultimi 20 periodi che o giù di lì. Here8217s quello che la trama del tempo si presenta come se impostiamo 946 0.1, mantenendo 945 0.3. Questo sembra intuitivamente ragionevole a questa serie, anche se probabilmente è pericoloso estrapolare questa tendenza eventuali più di 10 periodi in futuro. Che dire le statistiche di errore Ecco un confronto modello per i due modelli sopra indicati, nonché tre modelli SES. Il valore ottimale di 945.per modello SES è di circa 0,3, ma risultati simili (con leggermente più o meno reattività, rispettivamente) sono ottenute con 0,5 e 0,2. exp lineare (A) Holts. levigatura con alfa e beta 0,3048 0.008 (B) Holts exp lineare. levigatura con alpha 0.3 e beta 0.1 (C) livellamento esponenziale semplice con alfa 0,5 (D) livellamento esponenziale semplice con alpha 0.3 (E) livellamento esponenziale semplice con alpha 0.2 Le loro statistiche sono quasi identiche, quindi abbiamo davvero can8217t fare la scelta sulla base di errori di previsione 1-step-avanti all'interno del campione di dati. Dobbiamo ripiegare su altre considerazioni. Se crediamo fermamente che ha senso basare la stima attuale tendenza su quanto è successo negli ultimi 20 periodi o giù di lì, siamo in grado di fare un caso per il modello LES con 945 0,3 e 946 0.1. Se vogliamo essere agnostici sul fatto che vi è una tendenza locale, poi uno dei modelli SES potrebbe essere più facile da spiegare e darebbe anche altre previsioni middle-of-the-road per i prossimi 5 o 10 periodi. (Ritorna all'inizio pagina.) Quale tipo di trend-estrapolazione è meglio: L'evidenza empirica orizzontale o lineare suggerisce che, se sono già stati adeguati i dati (se necessario) per l'inflazione, allora può essere imprudente per estrapolare lineare a breve termine tendenze molto lontano nel futuro. Le tendenze evidenti oggi possono rallentare in futuro, dovuta a cause diverse quali obsolescenza dei prodotti, l'aumento della concorrenza, e flessioni cicliche o periodi di ripresa in un settore. Per questo motivo, semplice livellamento esponenziale spesso si comporta meglio out-of-sample che altrimenti potrebbero essere previsto, nonostante la sua quotnaivequot estrapolazione di tendenza orizzontale. modifiche di tendenza smorzato del modello di livellamento esponenziale lineare sono spesso utilizzati in pratica per introdurre una nota di conservatorismo nelle sue proiezioni di tendenza. Il modello LES smorzata-tendenza può essere implementato come un caso particolare di un modello ARIMA, in particolare, un modello (1,1,2) ARIMA. E 'possibile calcolare gli intervalli di confidenza intorno previsioni a lungo termine prodotte da modelli di livellamento esponenziale, considerandoli come casi speciali di modelli ARIMA. (Attenzione: non tutto il software calcola correttamente intervalli di confidenza per questi modelli.) La larghezza degli intervalli di confidenza dipende (i) l'errore RMS del modello, (ii) il tipo di levigatura (semplice o lineare) (iii) il valore (s) della costante di smoothing (s) e (iv) il numero di periodi avanti si prevedono. In generale, gli intervalli distribuite più veloce come 945 diventa più grande nel modello SES e si propagano molto più velocemente quando lineare piuttosto che semplice lisciatura viene utilizzato. Questo argomento è discusso ulteriormente nella sezione modelli ARIMA delle note. (Torna a inizio pagina.) 3 livelli previsti comprensione e metodi che è possibile generare sia di dettaglio (singolo elemento) le previsioni e di sintesi (linea di prodotto) le previsioni che riflettono modelli di domanda di prodotto. Il sistema analizza passato vendite per calcolare le previsioni utilizzando 12 metodi di previsione. Le previsioni includono informazioni dettagliate a livello di articolo e più alto livello di informazioni su una filiale o la società nel suo complesso. 3.1 Previsione Criteri di valutazione delle prestazioni In base alla selezione di opzioni di elaborazione e sulle tendenze e modelli nei dati di vendita, alcuni metodi di previsione prestazioni migliori di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto potrebbe non essere appropriato per un altro prodotto. Si potrebbe scoprire che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita del prodotto rimane appropriata durante l'intero ciclo di vita. È possibile scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione: Percentuale di accuratezza (POA). Media deviazione assoluta (MAD). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo specificato. Questo periodo è chiamato un periodo holdout o un periodo di best fit. I dati di questo periodo è utilizzato come base per raccomandare quale metodo di previsione per la fabbricazione di proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto e può cambiare da una generazione previsioni a quella successiva. 3.1.1 Best Fit Il sistema suggerisce la migliore previsione fit applicando i metodi di previsione selezionati in passato cronologia degli ordini di vendita e confrontando la simulazione del tempo alla storia reale. Quando si genera una migliore previsione in forma, il sistema confronta effettive storie ordini di vendita per le previsioni per un periodo di tempo specifico e calcola quanto accuratamente ogni metodo di previsione diverso previsto vendite. Quindi il sistema raccomanda la previsione più accurata come la soluzione migliore. Questo grafico illustra migliori previsioni fit: Figura 3-1 Scelta migliore prevedere il sistema utilizza questa sequenza di passaggi per determinare la soluzione migliore: utilizzare ogni metodo indicato per simulare una previsione per il periodo di dati di controllo. Confronta le vendite reali alle previsioni simulate per il periodo di dati di controllo. Calcolare il POA o il MAD per determinare quale metodo di previsione più si avvicina ultimi vendite effettive. Il sistema utilizza sia POA o MAD, in base alle opzioni di elaborazione selezionate. Consiglia best fit previsioni dal POA che è più vicino al 100 per cento (sopra o sotto) o il MAD che è più vicino a zero. 3.2 Metodi di previsione JD Edwards EnterpriseOne Previsioni Management utilizza 12 metodi per la previsione quantitativa e indica quale metodo fornisce la soluzione migliore per la situazione di previsione. Questa sezione discute: Metodo 1: cento rispetto allo scorso anno. Metodo 2: Percentuale calcolata rispetto allo scorso anno. Metodo 3: l'anno scorso a questo anno. Metodo 4: media mobile. Metodo 5: Lineare approssimazione. Metodo 6: regressioni al minimo quadrato. Metodo 7: secondo grado approssimazione. Metodo 8: metodo flessibile. Metodo 9: ponderata media mobile. Metodo 10: Linear Smoothing. Metodo 11: esponenziale. Metodo 12: livellamento esponenziale con Trend e la stagionalità. Specificare il metodo che si desidera utilizzare nelle opzioni di elaborazione per il programma di previsione Generation (R34650). La maggior parte di questi metodi forniscono un controllo limitato. Ad esempio, il peso posto sulla recente dati storici o l'intervallo di date di dati storici che viene utilizzato nei calcoli può essere specificato dall'utente. Gli esempi nella guida indicano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. Gli esempi di metodo nella parte all'uso guida o tutti questi insiemi di dati, che è dati storici degli ultimi due anni. La proiezione del tempo va in prossimo anno. Questi dati la storia delle vendite è stabile con piccoli aumenti stagionali di luglio e dicembre. Questo modello è caratteristica di un prodotto maturo che potrebbe essere avvicinando obsolescenza. 3.2.1 Metodo 1: cento rispetto allo scorso anno Questo metodo utilizza il cento rispetto allo scorso anno formula per moltiplicare ciascun periodo di previsione per la percentuale di aumento o diminuzione specificato. Per prevedere la domanda, questo metodo richiede il numero di periodi per la migliore vestibilità più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda per gli elementi stagionali con la crescita o il declino. 3.2.1.1 Esempio: Metodo 1: cento rispetto allo scorso anno, il cento rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore si specifica e quindi i progetti che si traducono nel corso del prossimo anno. Questo metodo potrebbe essere utile nel budget per simulare l'effetto di un tasso di crescita specificata o quando la storia di vendita ha una significativa componente stagionale. specifiche di previsione: fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare i anni le vendite dati storici precedenti del 10 per cento. Richiesto storia delle vendite: un anno per il calcolo della previsione, più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit) che si specifica. Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a 117 volte 1.1 128,7 arrotondato al 129. marzo previsione è uguale a 115 volte 1.1 126,5 arrotondata a 127. 3.2.2 Metodo 2: Percentuale calcolata rispetto allo scorso anno Questo metodo utilizza la percentuale calcolato su Ultimo formula anno per confrontare gli ultimi vendite dei periodi specificati per le vendite dagli stessi periodi dell'anno precedente. Il sistema determina un aumento o diminuzione percentuale, e quindi moltiplica ogni periodo per la percentuale per determinare la previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi della storia di ordine di vendita più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda a breve termine per gli elementi stagionali con la crescita o il declino. 3.2.2.1 Esempio: Metodo 2: Percentuale calcolata rispetto allo scorso anno la percentuale calcolata rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore che viene calcolato dal sistema, e poi si proietta quel risultato per il prossimo anno. Questo metodo può essere utile nel progettare l'effetto di estendere il tasso di crescita recente di un prodotto nel prossimo preservando un andamento stagionale che è presente nella storia vendite. specifiche Previsione: Gamma di storia delle vendite da utilizzare nel calcolo del tasso di crescita. Ad esempio, specificare n è uguale a 4 nella opzione di elaborazione per confrontare la storia delle vendite per gli ultimi quattro periodi a quelle stesse quattro periodi dell'anno precedente. Utilizzare il rapporto calcolato per rendere la proiezione per il prossimo anno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzata nel calcolo del tempo, n 4 data: febbraio previsione è pari a 117 volte 0,9766 114.26 arrotondato al 114. marzo previsione è pari 115 volte 0,9766 112.31 arrotondato al 112. 3.2.3 Metodo 3: l'anno scorso a questo anno Questo metodo utilizza ultimi anni le vendite per i prossimi anni previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più un anno della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda di livello o di domanda stagionale, senza una tendenza. 3.2.3.1 Esempio: Metodo 3: l'anno scorso a questo anno l'ultimo anno a questa formula Anno copia i dati delle vendite rispetto all'anno precedente per l'anno successivo. Questo metodo potrebbe essere utile nel budget per simulare le vendite al livello attuale. Il prodotto è maturo e non ha alcuna tendenza nel lungo periodo, ma un significativo modello di domanda stagionale potrebbe esistere. specifiche Previsione: Nessuno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January Previsioni uguale a gennaio dello scorso anno con un valore di previsione di 128. febbraio previsione è pari a febbraio dello scorso anno con un valore di previsione di 117. marzo previsione è pari a marzo dello scorso anno con un valore di previsione di 115. 3.2.4 metodo 4: media mobile Questo metodo utilizza la formula media Trasferirsi in media il numero specificato di periodi di proiettare il periodo successivo. Si dovrebbe ricalcolare spesso (mensile, o almeno ogni tre mesi) per riflettere la modifica livello di domanda. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda di prodotti maturi senza tendenza. 3.2.4.1 Esempio: Metodo 4: media mobile media mobile (MA) è un metodo popolare per la media dei risultati della recente storia delle vendite per determinare una proiezione per il breve termine. Il metodo di previsione MA ritardo rispetto tendenze. Previsioni pregiudizi e gli errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti che sono in fase di crescita o di obsolescenza del ciclo di vita. specifiche Previsione: n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Essa si traduce in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) è più veloce di rispondere a cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a (114 119 137 125) 4 123.75 arrotondato al 124. marzo previsione è pari a (119 137 125 124) 4 126.25 arrotondato a 126. 3.2.5 Metodo 5: Lineare Approssimazione Questo metodo utilizza la formula lineare approssimazione per calcolare un trend dal numero di periodi della storia degli ordini di vendita e di proiettare questa tendenza alla previsione. Si dovrebbe ricalcolare l'andamento mensile per rilevare i cambiamenti nelle tendenze. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita specificate. Questo metodo è utile per prevedere la domanda di nuovi prodotti, o prodotti con trend positivi o negativi consistenti che non sono a causa di fluttuazioni stagionali. 3.2.5.1 Esempio: Metodo 5: lineare approssimazione lineare Approssimazione calcola una tendenza che si basa su due punti di vendita i dati della cronologia. Questi due punti definiscono una linea di tendenza retta che si proietta nel futuro. Utilizzare questo metodo con cautela perché le previsioni a lungo raggio vengono sfruttate da piccole variazioni in soli due punti dati. specifiche Previsione: n è uguale al punto di dati nella storia delle vendite che viene confrontato con il più recente punto dati per identificare una tendenza. Ad esempio, specificare n 4 di utilizzare la differenza tra il dicembre (dati più recenti) e agosto (quattro periodi prima del dicembre) come base per il calcolo del trend. Minimo richiesto storia delle vendite: n più 1 più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (1 volta 2) 139. febbraio previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (2 volte 2) 141. marzo previsioni di dicembre di un anno 1 (Trend), che equivale a 137 (3 volte 2) 143. 3.2.6 metodo 6: minimi quadrati Regressione minimi quadrati di regressione (LSR) metodo deriva una equazione che descrive una relazione linea retta tra i dati storici di vendita e il passaggio del tempo. LSR inserisce una linea per la gamma selezionata di dati in modo che la somma dei quadrati delle differenze tra i punti dati vendite effettive e la linea di regressione sono ridotti al minimo. La previsione è una proiezione di questa linea retta verso il futuro. Questo metodo richiede storia dati di vendita per il periodo che è rappresentato dal numero di periodi best fit più il numero specificato di periodi di dati storici. Il requisito minimo è di due punti di dati storici. Questo metodo è utile per prevedere la domanda quando una tendenza lineare è nei dati. 3.2.6.1 Esempio: Metodo 6: minimi quadrati di regressione lineare, o Least Squares Regression (LSR), è il metodo più popolare per l'identificazione di un trend lineare nei dati storici di vendita. Il metodo calcola i valori di A e B per essere utilizzato nella formula: Questa equazione descrive una linea retta, in cui Y rappresenta vendite e X rappresenta il tempo. La regressione lineare è lento a riconoscere i punti di svolta e gli spostamenti di funzioni passo della domanda. La regressione lineare inserisce una linea retta ai dati, anche quando i dati sono stagionali o meglio descritto da una curva. Quando i dati vendite di storia segue una curva o ha un forte andamento stagionale, previsto pregiudizi e si verificano errori sistematici. specifiche Previsione: n uguale i periodi della storia delle vendite che verranno utilizzati nel calcolo dei valori per a e b. Ad esempio, specificare n 4 di utilizzare la storia da settembre a dicembre come base per i calcoli. Quando i dati sono disponibili, sarebbe normalmente utilizzato un n grande (ad esempio n 24). LSR definisce una linea per due soli punti di dati. Per questo esempio, un valore piccolo per n (n = 4) è stato scelto per ridurre i calcoli manuali necessarie per verificare i risultati. Minimo richiesto storia delle vendite: n periodi più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: marzo previsione è pari a 119,5 (7 volte 2,3) 135,6 arrotondato a 136. 3.2.7 Metodo 7: secondo grado Approssimazione Per proiettare le previsioni, questo metodo utilizza la formula secondo grado di approssimazione per tracciare una curva che si basa sul numero di periodi di storia delle vendite. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita tre volte. Questo metodo non è utile per prevedere la domanda per un periodo a lungo termine. 3.2.7.1 Esempio: Metodo 7: secondo grado approssimazione lineare di regressione determina i valori di A e B nella formula previsioni Y a b X con l'obiettivo di una linea retta ai dati storici di vendita. Secondo grado ravvicinamento è simile, ma questo metodo determina valori di a, b, c nella formula questa previsione: Y a b X c X 2 L'obiettivo di questo metodo è quello di adattare una curva ai dati storici vendite. Questo metodo è utile quando un prodotto è nel passaggio tra le fasi del ciclo di vita. Ad esempio, quando un nuovo prodotto si sposta da introduzione a stadi di crescita, l'andamento delle vendite potrebbe accelerare. A causa del secondo termine di ordine, la previsione può avvicinarsi rapidamente infinito o scendere a zero (a seconda che il coefficiente c è positivo o negativo). Questo metodo è utile solo nel breve periodo. specifiche di previsione: la formula trovano a, b, c per adattarsi una curva a esattamente tre punti. Si specifica n, il numero di periodi di tempo di dati di accumulare in ognuno dei tre punti. In questo esempio, n 3. dati di vendita effettivi per aprile a giugno è combinata nel primo punto, Q1. Luglio a settembre vengono aggiunti insieme per creare Q2 e ottobre a dicembre somma da Q3. La curva è montato tre valori Q1, Q2, Q3 e. Richiesto storia delle vendite: 3 volte n periodi per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: Q0 (Jan) (febbraio) (Mar) Q1 (Apr) (Maggio) (giugno) che è uguale a 125 122 137 384 Q2 (luglio) (agosto) (settembre) che è uguale a 140 129 131 400 Q3 (ott) (Nov) (Dec) che è uguale a 114 119 137 370 la fase successiva prevede il calcolo dei tre coefficienti a, b, e c per essere utilizzata nella previsione formula Y ab X c X 2. Q1, Q2, Q3 e sono presentati sul grafico, in cui il tempo è tracciata sull'asse orizzontale. Q1 rappresenta vendite storiche totali per aprile, maggio e giugno ed è tracciata a X 1 Q2 corrisponde a luglio a settembre Q3 corrisponde ad ottobre a dicembre e Q4 rappresenta gennaio a marzo. Questo grafico illustra il tracciato di Q1, Q2, Q3, Q4 e per la seconda approssimazione grado: Figura 3-2 Rappresentazione grafica Q1, Q2, Q3, Q4 e per seconda approssimazione grado tre equazioni descrivono i tre punti sul grafico: (1) Q1 un bX cX 2 dove X 1 (Q1 abc) (2) Q2 un bX cX 2 dove X 2 (Q2 un 2b 4c) (3) Q3 un bX cX 2 dove X 3 (Q3 un 3b 9c) Risolvere le tre equazioni simultaneamente per trovare b, a, e c: Sottrai equazione 1 (1) la formula 2 (2) e risolvere per B: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c sostituto questa equazione per b nell'equazione (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c un Q3 ndash 3 (2T ndash Q1) Infine, sostituire queste equazioni di a e B nell'equazione (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Il metodo secondo grado Approssimazione calcola a, b, ec come segue: a Q3 ndash 3 (2T ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (ndash Q1) ndash3c Q2 (400 ndash 384) ndash (3 volte ndash23) 16 69 85 C (Q3 ndash Q2) (Q1 ndash Q2) 2 ( 370 ndash 400) (384 ndash 400) 2 ndash23 si tratta di un calcolo di previsione secondo grado di approssimazione: Y a bX cX 2 322 85X (ndash23) (X 2) Quando X 4, Q4 322 340 ndash 368 294. La previsione è uguale a 294 3 98 per periodo. Quando X 5, Q5 322 425 ndash 575 172. La previsione è pari a 172 3 58.33 arrotondato a 57 per periodo. Quando X 6, Q6 322 510 ndash 828 4. La previsione è pari a 4 3 1,33 arrotondato a 1 per periodo. Questa è la previsione per il prossimo anno, l'anno scorso a questo anno: 3.2.8 Metodo 8: metodo flessibile Questo metodo consente di selezionare il miglior numero impeto di periodi della storia degli ordini di vendita che inizia n mesi prima della data di inizio del tempo, e per applicare un aumento o diminuzione percentuale fattore di moltiplicazione con cui modificare la previsione. Questo metodo è simile al metodo 1, cento rispetto allo scorso anno, tranne che è possibile specificare il numero di periodi che si utilizza come base. A seconda di cosa si seleziona come n, questo metodo richiede periodi di meglio si adattano più il numero di periodi di dati di vendita che è indicato. Questo metodo è utile per prevedere la domanda per una tendenza pianificata. 3.2.8.1 Esempio: Metodo 8: metodo flessibile Il metodo flessibile (per cento rispetto al n mesi prima) è simile al metodo 1, cento rispetto allo scorso anno. Entrambi i metodi si moltiplicano i dati di vendita provenienti da un periodo di tempo precedente di un fattore specificato da te, e quindi progetti che risultano nel futuro. Nella cento rispetto allo scorso anno il metodo, la proiezione si basa sui dati dello stesso periodo dell'esercizio precedente. È inoltre possibile utilizzare il metodo flessibile per specificare un periodo di tempo, altro rispetto allo stesso periodo l'anno scorso, da utilizzare come base per i calcoli. Fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare le vendite precedenti dati storici del 10 per cento. periodo di base. Ad esempio, n 4 fa sì che la prima previsione ad essere basata su dati di vendita nel mese di settembre dello scorso anno. Minimo richiesto storia delle vendite: il numero di periodi di nuovo al periodo di base più il numero di periodi di tempo che è necessario per la valutazione delle prestazioni del tempo (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.9 Metodo 9: Weighted Moving Average La Moving formula ponderata media è simile al metodo 4, Moving Average formula, perché la media è la storia mesi precedenti le vendite che proietta la successiva storia mesi le vendite. Tuttavia, con questa formula è possibile assegnare i pesi per ciascuno dei periodi precedenti. Questo metodo richiede il numero di periodi ponderati selezionati più il numero di periodi di dati migliore vestibilità. Simile a media mobile, questo metodo è in ritardo rispetto tendenze della domanda, quindi questo metodo non è raccomandato per i prodotti con le tendenze forti o stagionalità. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda che è relativamente livello. 3.2.9.1 Esempio: Metodo 9: ponderata media mobile Il metodo ponderata media mobile (WMA) è simile al metodo 4, media mobile (MA). Tuttavia, è possibile assegnare i pesi diseguali ai dati storici quando si utilizza WMA. Il metodo calcola una media ponderata di storia recente vendite per arrivare ad una proiezione per il breve termine. Dati più recenti è di solito un fattore di ponderazione maggiore di dati più vecchi, in modo da WMA è più sensibile alle variazioni del livello delle vendite. Tuttavia, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta le tendenze forti o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. Il numero di periodi della storia delle vendite (n) da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Tali risultati un valore in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) risponde più rapidamente ai cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Il numero totale di periodi per l'opzione di elaborazione rdquo14 - periodi includerdquo non deve superare i 12 mesi. Il peso che viene assegnato a ciascuno dei periodi di dati storici. I pesi assegnati dovranno totale 1.00. Ad esempio, quando n 4, assegnare un peso di 0,50, 0,25, 0,15, 0,10 e con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsione è pari a (131 volte) 0,10 (114 volte) 0.15 (119 volte) 0.25 (137 volte) 0.50 (0.10 0.15 0.25 0.50) 128.45 arrotondata a 128. Febbraio previsione pari (114 volte 0.10) (119 volte) 0.15 (137 volte) 0.25 (128 volte) 0.50 1 127,5 arrotondata a 128. marzo previsione è pari a (119 volte) 0,10 (137 volte) 0.15 (128 volte) 0.25 (128 volte) 0.50 1 128.45 arrotondato a 128. 3.2.10 metodo 10: Linear Smoothing Questo metodo calcola una media ponderata dei dati di vendita del passato. Nel calcolo, questo metodo utilizza il numero di periodi della storia degli ordini di vendita (da 1 a 12) che è indicato nella opzione di elaborazione. Il sistema utilizza una progressione matematica pesare i dati nell'intervallo dal primo (almeno peso) al finale (più peso). Quindi il sistema proietta queste informazioni per ciascun periodo di previsione. Questo metodo richiede i mesi migliori Fit Plus la storia ordine di vendita per il numero di periodi che sono specificati in opzione di elaborazione. 3.2.10.1 Esempio: Metodo 10: Linear Smoothing Questo metodo è simile al metodo 9, WMA. Tuttavia, invece di assegnare arbitrariamente pesi ai dati storici, una formula viene utilizzata per assegnare i pesi che declinano in modo lineare e sommare a 1.00. Il metodo calcola una media ponderata di recente storia delle vendite per arrivare ad una proiezione per il breve termine. Come tutte le tecniche di previsione in movimento media lineari, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n è uguale a 4 nell'opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Il sistema assegna automaticamente i pesi ai dati storici che il declino lineare e somma da 1,00. Per esempio, quando n è uguale a 4, il sistema assegna pesi di 0,4, 0,3, 0,2, e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.11 Metodo 11: livellamento esponenziale Questo metodo calcola una media levigato, che diventa una stima che rappresenta il livello generale delle vendite nel corso dei periodi di dati storici selezionati. Questo metodo richiede storia dei dati di vendita per il periodo di tempo che è rappresentato dal numero di periodi più appropriate più il numero di periodi di dati storici specificati. Il requisito minimo è di due periodi di dati storici. Questo metodo è utile per prevedere la domanda quando nessuna tendenza lineare è nei dati. 3.2.11.1 Esempio: Metodo 11: livellamento esponenziale Questo metodo è simile al metodo 10, Linear Smoothing. In Linear Smoothing, il sistema assegna pesi che declinano in modo lineare ai dati storici. In esponenziale, il sistema assegna pesi che in modo esponenziale decadimento. L'equazione per la previsione esponenziale è: alpha Previsione (precedenti vendite effettive) (1 ndashalpha) (precedente previsione) La previsione è una media ponderata delle vendite effettive rispetto al periodo precedente e le previsioni rispetto al periodo precedente. Alpha è il peso che viene applicato alle vendite effettive del periodo precedente. (1 ndash alfa) è il peso che viene applicato alla previsione per il periodo precedente. Valori per gamma alpha da 0 a 1 e di solito cadono fra 0,1 e 0,4. La somma dei pesi è 1.00 (alpha (1 ndash alfa) 1). Si dovrebbe assegnare un valore per la lisciatura costante, alfa. Se non si assegna un valore per la costante di smoothing, il sistema calcola un valore assunto che si basa sul numero di periodi della storia delle vendite che è specificato nella opzione di elaborazione. alpha pari alla costante di smoothing che viene utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori di campo di alpha da 0 a 1. n è uguale alla serie di dati storici di vendita per includere nei calcoli. In generale, un anno di dati di storia delle vendite è sufficiente per stimare il livello generale delle vendite. Per questo esempio, un valore piccolo per n (n = 4) è stato scelto per ridurre i calcoli manuali necessarie per verificare i risultati. Esponenziale in grado di generare una previsione che si basa su un minimo di un punto di dati storici. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.12 Metodo 12: livellamento esponenziale con Trend e Stagionalità Questo metodo calcola una tendenza, un indice di stagione, e una media esponenziale levigata dalla storia degli ordini di vendita. Il sistema applica poi una proiezione della tendenza alla previsione e regola per l'indice stagionali. Questo metodo richiede il numero di periodi migliori Fit Plus due anni di dati di vendita, ed è utile per gli elementi che hanno sia tendenza e stagionalità nelle previsioni. È possibile inserire il fattore alfa e beta, o hanno il sistema li calcola. Alfa e beta fattori sono la costante smoothing che il sistema utilizza per calcolare la media lisciata per il livello generale o grandezza di vendite (alfa) e la componente di trend della previsione (beta). 3.2.12.1 Esempio: Metodo 12: livellamento esponenziale con Trend e stagionalità Questo metodo è simile al metodo 11, esponenziale, in quanto un medio lisciato viene calcolato. Tuttavia, il metodo 12 include anche un termine nell'equazione di previsione per calcolare una tendenza levigata. La previsione è composto da una media levigata che viene regolata per un andamento lineare. Quando specificato nell'opzione di elaborazione, la previsione è rettificato per stagionalità. Alpha pari alla costante di smoothing utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori di campo di alpha da 0 a 1. Beta è uguale la costante di smoothing che viene utilizzato per calcolare la media lisciato per la componente di trend della previsione. I valori di gamma beta da 0 a 1. Se un indice di stagione viene applicato alla previsione. Alfa e beta sono indipendenti l'uno dall'altro. Non hanno sommare a 1,0. Minimo richiesto storia delle vendite: Un anno di più il numero di periodi di tempo che sono necessari per valutare le prestazioni del tempo (periodi di best fit). Quando due o più anni di dati storici è disponibile, il sistema utilizza due anni di dati nei calcoli. Metodo 12 utilizza due equazioni di livellamento esponenziale e una media semplice per calcolare una media levigata, una tendenza lisciato, e un semplice indice di media stagionale. Una media esponenziale levigata: Una tendenza esponenziale levigata: Un semplice indice media stagionale: Figura 3-3 semplice media stagionale Indice La previsione viene quindi calcolato utilizzando i risultati delle tre equazioni: L è la lunghezza della stagionalità (L rappresenta 12 mesi o 52 settimane). t è il periodo di tempo corrente. m è il numero di periodi di tempo nel futuro della previsione. S è il fattore moltiplicativo destagionalizzazione che viene indicizzato al periodo di tempo adeguato. Questa storia tabella elenca utilizzati nel calcolo del tempo: questa sezione fornisce una panoramica di previsione valutazioni e discute: è possibile selezionare metodi di previsione per generare fino a 12 previsioni per ciascun prodotto. Ogni metodo di previsione potrebbe creare una proiezione leggermente diverso. Quando migliaia di prodotti sono previsti, una decisione soggettiva è impraticabile per quanto riguarda il quale prevede di usare nei piani di ciascun prodotto. Il sistema valuta automaticamente le prestazioni per ogni metodo di previsione che si seleziona e per ogni prodotto che si previsione. È possibile scegliere tra due criteri di prestazione: MAD e POA. MAD è una misura di errore di previsione. POA è una misura di bias previsione. Entrambe queste tecniche di valutazione delle prestazioni richiedono effettivi dati storici di vendita per un periodo determinato da voi. Il periodo della storia recente usato per la valutazione è chiamato un periodo di dati di controllo o un periodo di best fit. Per misurare le prestazioni di un metodo di previsione, il sistema: utilizza le formule di previsione per simulare una previsione per il periodo di dati di controllo storici. Fa un confronto tra i dati di vendita reale e la simulazione meteo per il periodo di dati di controllo. Quando si selezionano più metodi di previsione, questo stesso processo si verifica per ogni metodo. Le previsioni multipli sono calcolati per il periodo di dati di controllo e rispetto alla storia conosciuta di vendita per lo stesso periodo. Il metodo di previsione che produce la migliore corrispondenza (best fit) tra le previsioni e le vendite effettive durante il periodo di dati di controllo è raccomandato per l'uso nei piani. Questa raccomandazione è specifico per ogni prodotto e potrebbe cambiare ogni volta che si genera una previsione. 3.3.1 Media Deviazione media assoluta deviazione assoluta (MAD) è la media (o media) dei valori assoluti (o grandezza) delle deviazioni (o errori) tra i dati effettivi e previsti. MAD è una misura della grandezza media di errori aspettarsi, dato un metodo di previsione e la storia dei dati. Poiché i valori assoluti sono utilizzati nel calcolo, errori positivi non annullano errori negativi. Quando si confrontano diversi metodi di previsione, quello con il più piccolo MAD è il più affidabile per il prodotto per tale periodo di disinnesto. Quando la previsione è imparziale e gli errori sono distribuiti normalmente, esiste una semplice relazione matematica tra MAD e le altre due misure comuni di distribuzione, che sono la deviazione standard e l'errore quadratico medio. Per esempio: MAD (Sigma (Actual) ndash (previsione)) n deviazione standard, (Sigma) cong 1,25 MAD quadratico medio cong errore ndashsigma2 Questo esempio indica il calcolo di MAD per due dei metodi di previsione. In questo esempio si presuppone che sia stato specificato nell'opzione di elaborazione che la durata del periodo holdout (periodi di best fit) è pari a cinque periodi. 3.3.1.1 Metodo 1: l'anno scorso a questo anno Questa tabella è storia utilizzata nel calcolo del MAD, determinati periodi Best Fit 5: media pari deviazione assoluta (2 1 20 10 14) 5 9.4. Sulla base di queste due scelte, la media mobile, n 4 metodo è consigliato perché ha la MAD più piccolo, 9.4, per un determinato periodo di dati di controllo. 3.3.2 Percentuale di Precisione Percentuale di Precisione (POA) è una misura di bias previsione. Quando le previsioni sono sempre troppo alti, le scorte si accumulano e costi di magazzino aumentano. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. Nei servizi, l'entità degli errori di previsione è di solito più importante di quanto non sia pregiudizi del tempo. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Definition In the weighted moving average model (forecast strategy 14), every historical value is weighted with a factor from the weighting group in the univariate forecast profile. Formula per la ponderata media mobile Il modello a media mobile ponderata consente al peso recenti dati storici più pesantemente rispetto ai dati più vecchi quando si determina la media. A tale scopo, se i dati più recenti è più rappresentativo di ciò che la domanda futura sarà di dati più vecchi. Pertanto, il sistema è in grado di reagire più rapidamente ad un cambiamento di livello. La precisione di questo modello dipende in gran parte la vostra scelta di fattori di ponderazione. Se il modello di serie storica modifiche, è necessario anche adattare i fattori di ponderazione. Durante la creazione di un gruppo di ponderazione, si entra i fattori di ponderazione come percentuali. The sum of the weighting factors does not have to be 100. No ex-post forecast is calculated with this forecast strategy. Forecasting by Smoothing Techniques This site is a part of the JavaScript E-labs learning objects for decision making. Altri JavaScript in questa serie sono suddivise in diverse aree di applicazione nella sezione MENU in questa pagina. Una serie temporale è una sequenza di osservazioni che vengono ordinati nel tempo. Inerente la raccolta di dati assunto nel tempo è una forma di variazione casuale. Esistono metodi per ridurre di annullare l'effetto dovuto alla variazione casuale. Ampiamente tecniche utilizzate sono levigante. Queste tecniche, se applicato correttamente, rivela più chiaramente le tendenze di fondo. Inserire le serie storiche Riga-saggio in sequenza, a partire dall'angolo sinistro in alto, e il parametro (s), quindi fare clic sul pulsante Calcola per ottenere la previsione di un periodo avanti. caselle vuote non sono inclusi nei calcoli, ma gli zeri sono. In introdurre i dati per passare da cellula a cellula nel data-matrix utilizzare il tasto Tab non freccia o inserire le chiavi. Caratteristiche di serie temporali, che potrebbero essere rivelato esaminando il suo grafico. con i valori previsti, e il comportamento dei residui, la modellazione di previsione condizione. Medie mobili: Le medie mobili sono tra le tecniche più popolari per la pre-elaborazione delle serie storiche. Essi sono utilizzati per filtrare il rumore bianco casuale dai dati, per rendere più agevole la serie storica o anche per sottolineare alcuni componenti informativi contenuti nelle serie temporali. Esponenziale: Questo è uno schema molto popolare per la produzione di una serie storica levigata. Considerando che le medie mobili osservazioni passate hanno lo stesso peso, esponenziale assegna in modo esponenziale diminuzione pesi come l'osservazione invecchiano. In altre parole, osservazioni recenti sono date relativamente più peso nella previsione che le osservazioni più anziani. Doppia esponenziale è meglio alle tendenze di manipolazione. Triple esponenziale è meglio a gestire le tendenze parabola. Una media mobile exponenentially ponderata con una costante livellamento a. corrisponde all'incirca ad una media mobile semplice di lunghezza (cioè periodo) n, dove n e sono legati da: 2 (n1) o N (2 - a) a. Così, per esempio, una media mobile exponenentially ponderato con una lisciatura costante pari a 0,1 corrisponderebbe all'incirca ad una media mobile 19 giorni. E una media mobile semplice di 40 giorni corrisponderebbe grosso modo a una media mobile esponenziale ponderata con una costante livellamento pari a 0,04,878 mila. Holts lineare esponenziale: Supponiamo che la serie temporale è non stagionale, ma fa tendenza del display. Metodo Holts stima sia il livello attuale e la tendenza attuale. Si noti che la media mobile semplice è caso particolare di livellamento esponenziale impostando il periodo di media mobile per la parte intera di (2-Alpha) Alpha. Per la maggior parte dei dati aziendali un parametro Alpha minore di 0,40 è spesso efficace. Tuttavia, si può eseguire una ricerca a griglia dello spazio dei parametri, con 0.1 al 0.9, con incrementi di 0,1. Quindi il miglior alfa ha il più piccolo errore assoluto medio (MA errore). Come confrontare diversi metodi di lisciatura: Anche se ci sono indicatori numerici per valutare l'accuratezza della tecnica di previsione, l'approccio più ampiamente è nell'uso confronto visivo di diverse previsioni per valutare la loro accuratezza e scegliere tra i vari metodi di previsione. In questo approccio, si deve tracciare (utilizzando, ad esempio Excel) sullo stesso grafico i valori originali di una variabile serie storiche ei valori previsti di diversi metodi di previsione diversi, facilitando in tal modo un confronto visivo. È possibile, come proiettando le ipotesi precedenti, levigando Tecniche JavaScript per ottenere i valori di previsione passato in base ad smoothing tecniche che utilizzano il parametro unico singolo. Holt e Winters metodi utilizzano due e tre parametri, rispettivamente, quindi non è un compito facile per selezionare l'ottimale, o anche vicine ai valori ottimali per tentativi ed errori per i parametri. Il singolo di livellamento esponenziale sottolinea la prospettiva a corto raggio si imposta il livello di all'ultima osservazione e si basa a condizione che non vi è alcuna tendenza. La regressione lineare, che si inserisce una linea minimi quadrati ai dati storici (o dati storici trasformati), rappresenta il lungo raggio, che è condizionato sull'andamento base. Holts livellamento esponenziale lineare acquisisce informazioni sulla recente tendenza. I parametri nel modello Holts è livelli-parametro che dovrebbe essere diminuita quando la quantità di variazione dei dati è grande, e tendenze a parametro dovrebbe essere aumentato se la direzione recente tendenza è sostenuta dalla causale alcuni fattori. Previsione a breve termine: Si noti che ogni JavaScript in questa pagina fornisce una previsione one-step-avanti. Per ottenere una previsione in due fasi-avanti. è sufficiente aggiungere il valore previsto per la fine di voi dati di serie temporali e quindi fare clic sullo stesso pulsante Calcola. You may repeat this process for a few times in order to obtain the needed short-term forecasts.

No comments:

Post a Comment